The role of copper and protons in heme-copper oxidases: kinetic study of an engineered heme-copper center in myoglobin.

نویسندگان

  • Jeffrey A Sigman
  • Hyeon K Kim
  • Xuan Zhao
  • James R Carey
  • Yi Lu
چکیده

To probe the role of copper and protons in heme-copper oxidase (HCO), we have performed kinetic studies on an engineered heme-copper center in sperm whale myoglobin (Leu-29 --> HisPhe-43 --> His, called Cu(B)Mb) that closely mimics the heme-copper center in HCO. In the absence of metal ions, the engineered Cu(B) center in Cu(B)Mb decreases the O(2) binding affinity of the heme. However, addition of Ag(I), a redox-inactive mimic of Cu(I), increases the O(2)-binding affinity. More importantly, copper ion in the Cu(B) center is essential for O(2) reduction, as no O(2) reduction can be observed in copper-free, Zn(II), or Ag(I) derivatives of Cu(B)Mb. Instead of producing a ferryl-heme as in HCO, the Cu(B)Mb generates verdoheme because the engineered Cu(B)Mb may lack a hydrogen bonding network that delivers protons to promote the heterolytic OO cleavage necessary for the formation of ferryl-heme. Reaction of oxidized Cu(B)Mb with H(2)O(2), a species equivalent in oxidation state to 2e(-), reduced O(2) but, possessing the extra protons, resulted in ferryl-heme formation, as in HCO. The results showed that the Cu(B) center plays a critical role in O(2) binding and reduction, and that proton delivery during the O(2) reduction is important to avoid heme degradation and to promote the HCO reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimetallic Copper-Heme-Protein-DNA Hybrid Catalyst for Diels Alder Reaction

A bimetallic heme-DNA cofactor, containing an iron and a copper center, was synthesized for the design of novel hybrid catalysts for stereoselective synthesis. The cofactor was used for the reconstitution of apo-myoglobin. Both the cofactor alone and its myoglobin adduct were used to catalyze a model Diels Alder reaction. Stereoselectivity of this conversion was analyzed by chiral HPLC. Reactio...

متن کامل

Role of copper ion in regulating ligand binding in a myoglobin-based cytochrome C oxidase model.

Cytochrome c oxidase (CcO), the terminal enzyme in the mitochondrial respiratory chain, catalyzes the four-electron reduction of dioxygen to water in a binuclear center comprised of a high-spin heme (heme a(3)) and a copper atom (Cu(B)) coordinated by three histidine residues. As a minimum model for CcO, a mutant of sperm whale myoglobin, named Cu(B)Mb, has been engineered, in which a copper at...

متن کامل

Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine

Copper amine oxidases are important enzymes, which contribute to the regulation of mono- and polyamine levels. Each monomer contains one Cu(II) ion and 2,4,5-trihydroxyphenylalanine (TPQ) as cofactors. They catalyze the oxidative deamination of primary amines to aldehydes with a ping-pong mechanism consisting of a transamination. The mechanism is followed by the transfer of two electrons to mol...

متن کامل

Gene cluster of Rhodothermus marinus high-potential iron-sulfur Protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases.

The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains an oxygen reductase, which uses HiPIP (high potential iron-sulfur protein) as an electron donor. The structural genes encoding the four subunits of this HiPIP:oxygen oxidoreductase were cloned and sequenced. The genes for subunits II, I, III, and IV (named rcoxA to rcoxD) are found in this order and seemed to ...

متن کامل

Widespread Distribution and Functional Specificity of the Copper Importer CcoA: Distinct Cu Uptake Routes for Bacterial Cytochrome c Oxidases

Cytochrome c oxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (CuB) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the CuB atom incorporated into this active site, where oxygen is reduced to water, are not well understoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 7  شماره 

صفحات  -

تاریخ انتشار 2003